Інгібування агрегації α-синуклеїну поліфенолами
DOI:
https://doi.org/10.15330/jpnubio.12.87-100Ключові слова:
α-синуклеїн, хвороба Паркінсона, амілоїдні фібрили, поліфеноли.Анотація
Хвороба Паркінсона (ХП) є другим за поширеністю нейродегенеративним захворюванням, що характеризується внутрішньоклітинними тілами Леві, які складаються переважно з амілоїдних фібрил, утворених α-синуклеїном (αSyn). Нативний αSyn є розчинним внутрішньо безладним білком, але при ХП він неправильно згортається в патологічну β-листову структуру, яка агрегується, порушує функцію мітохондрій, викликає запалення і, в кінцевому підсумку, призводить до загибелі нейронів. Оскільки агрегація αSyn відбувається шляхом багатоступеневого зародження та швидкого подовження фібрил, інгібування цього процесу, зокрема шляхом блокування росту фібрил на кінцях, є перспективною терапевтичною стратегією. Цей огляд зосереджується на поліфенолах як інгібіторах агрегації амілоїдних фібрил αSyn. Поліфеноли модулюють агрегацію за допомогою різних механізмів, включаючи стабілізацію мономерів, перенаправлення в нетоксичні олігомери поза шляхом (наприклад, EGCG, ресвератрол), руйнування існуючих фібрил (байкалеїн) та ковалентну модифікацію залишків лізину αSyn (кверцетин, гідрокситирозол). Важливо, що метаболіти харчових поліфенолів (такі як 3-HPPA), що походять з мікробіоти кишечника, можуть проникати через гематоенцефалічний бар'єр і сильно послаблювати зародження αSyn, що підкреслює їх терапевтичний потенціал при ПД.
Посилання
Abioye R, Okagu O, Udenigwe C (2022) Inhibition of Islet Amyloid Polypeptide Fibrillation by Structurally Diverse Phenolic Compounds and Fibril Disaggregation Potential of Rutin and Quercetin. J Agric Food Chem 70:392-402. https://doi.org/10.1021/acs.jafc.1c06918
Afitska K, Fucikova A, Shvadchak V, Yushchenko D (2019) alpha-Synuclein aggregation at low concentrations. Biochim Biophys Acta Proteins Proteom 1867:701-709. https://https://doi.org/10.1016/j.bbapap.2019.05.003
Aktas E, Hanagasi H, Ozgenturk N (2025) Levodopa and Plant-Derived Bioactive Compounds in Parkinson's Disease: Mechanisms, Efficacy, and Future Perspectives. CNS Neurosci Ther 31:e70540. https://https://doi.org/10.1111/cns.70540
Alam P, Bousset L, Melki R, Otzen D (2019) alpha-synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities. J Neurochem 150:522-534. https://doi.org/10.1111/jnc.14808
Alghamdi A, Birch D, Vyshemirsky V, Rolinski O (2022) Impact of the Flavonoid Quercetin on beta-Amyloid Aggregation Revealed by Intrinsic Fluorescence. J Phys Chem B 126:7229-7237. https://https://doi.org/10.1021/acs.jpcb.2c02763
Alim M, Ma Q, Takeda K, Aizawa T, Matsubara M, Nakamura M, Asada A, Saito T, Kaji H, Yoshii M, Hisanaga S, Ueda K (2004) Demonstration of a role for alpha-synuclein as a functional microtubule-associated protein. J Alzheimers Dis 6:435-442. https://https://doi.org/10.3233/jad-2004-6412
Alvarez-Berbel I, Espargaro A, Viayna A, Caballero A, Busquets M, Gamez P, Luque F, Sabate R (2022) Three to Tango: Inhibitory Effect of Quercetin and Apigenin on Acetylcholinesterase, Amyloid-beta Aggregation and Acetylcholinesterase-Amyloid Interaction. Pharmaceutics 14:11 https://doi.org/10.3390/pharmaceutics14112342
Ardah M, Paleologou K, Lv G, Abul Khair S, Kazim A, Minhas S, Al-Tel T, Al-Hayani A, Haque M, Eliezer D, El-Agnaf O (2014) Structure activity relationship of phenolic acid inhibitors of alpha-synuclein fibril formation and toxicity. Front Aging Neurosci 6:197. https://doi.org/10.3389/fnagi.2014.00197
Basellini M, Granadino-Roldan J, Torres-Ortega P, Simmini G, Rubio-Martinez J, Marin S, Cappelletti G, Cascante M, Canuelo A. (2025) Oleuropein Aglycone, an Olive Polyphenol, Influences Alpha-Synuclein Aggregation and Exerts Neuroprotective Effects in Different Parkinson's Disease Models. Mol Neurobiol 62:15741-15758. https://doi.org/10.1007/s12035-025-05208-6
Bell R, Vendruscolo M (2021) Modulation of the Interactions Between alpha-Synuclein and Lipid Membranes by Post-translational Modifications. Front Neurol 12:661117. https://doi.org/10.3389/fneur.2021.661117
Breydo L, Newland B, Zhang H, Rosser A, Werner C, Uversky V, Wang W (2016) A hyperbranched dopamine-containing PEG-based polymer for the inhibition of alpha-synuclein fibrillation. Biochem Biophys Res Commun 469:830-835. https://doi.org/10.1016/j.bbrc.2015.12.060
Buell A, Galvagnion C, Gaspar R, Sparr E, Vendruscolo M, Knowles T, Linse S, Dobson C (2014) Solution conditions determine the relative importance of nucleation and growth processes in alpha-synuclein aggregation. Proc Natl Acad Sci U S A 111:7671-7676. https://doi.org/10.1073/pnas.1315346111
Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton M, Sudhof T (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329:1663-1667. https://doi.org/10.1126/science.1195227
Canuelo A (2025) Olive polyphenols as modulators of amyloid aggregation: mechanisms and implications for neurodegenerative diseases. Food Funct 16:8658-8679. https://doi.org/10.1039/d5fo03331d
Chai C, Lim K (2013) Genetic insights into sporadic Parkinson's disease pathogenesis. Curr Genomics 14:486-501. https://doi.org/10.2174/1389202914666131210195808
Chau E, Kim H, Shin J, Martinez A, Kim J (2021) Inhibition of alpha-synuclein aggregation by AM17, a synthetic resveratrol derivative. Biochem Biophys Res Commun 574:85-90. https://doi.org/10.1016/j.bbrc.2021.08.049
de Rijk M, Breteler M, Graveland G, Ott A, Grobbee D, van der Meche F, Hofman A (1995) Prevalence of Parkinson's disease in the elderly: the Rotterdam Study. Neurology 45:2143-2146. https://doi.org/10.1212/wnl.45.12.2143
Dehay B, Bourdenx M, Gorry P, Przedborski S, Vila M, Hunot S, Singleton A, Olanow C, Merchant K, Bezard E, Petsko G, Meissner W (2015) Targeting alpha-synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations. Lancet Neurol 14:855-866. https://doi.org/10.1016/S1474-4422(15)00006-X
Di Rosa G, Brunetti G, Scuto M, Trovato Salinaro A, Calabrese E, Crea R, Schmitz-Linneweber C, Calabrese V, Saul N (2020) Healthspan Enhancement by Olive Polyphenols in C. elegans Wild Type and Parkinson's Models. Int J Mol Sci 21:11 https://doi.org/10.3390/ijms21113893
Fongaro B, Cappelletto E, Sosic A, Spolaore B, Polverino de Laureto P (2022) 3,4-Dihydroxyphenylethanol and 3,4-dihydroxyphenylacetic acid affect the aggregation process of E46K variant of alpha-synuclein at different extent: Insights into the interplay between protein dynamics and catechol effect. Protein Sci 31:e4356. https://doi.org/10.1002/pro.4356
Foscolou A, Critselis E, Panagiotakos D (2018) Olive oil consumption and human health: A narrative review. Maturitas 118:60-66. https://doi.org/10.1016/j.maturitas.2018.10.013
Galkin M, Priss A, Kyriukha Y, Shvadchak V (2024) Navigating alpha-Synuclein Aggregation Inhibition: Methods, Mechanisms, and Molecular Targets. Chem Rec 24:e202300282. https://doi.org/10.1002/tcr.202300282
Gautam S, Karmakar S, Bose A, Chowdhury P (2014) beta-cyclodextrin and curcumin, a potent cocktail for disaggregating and/or inhibiting amyloids: a case study with alpha-synuclein. Biochemistry 53:4081-4083. https://doi.org/10.1021/bi500642f
Guerrero-Ferreira R, Kovacik L, Ni D, Stahlberg H (2020) New insights on the structure of alpha-synuclein fibrils using cryo-electron microscopy. Curr Opin Neurobiol 61:89-95. https://doi.org/10.1016/j.conb.2020.01.014
Haaxma C, Bloem B, Borm G, Oyen W, Leenders K, Eshuis S, Booij J, Dluzen D, Horstink M (2007) Gender differences in Parkinson's disease. J Neurol Neurosurg Psychiatry 78:819-824. https://doi.org/10.1136/jnnp.2006.103788
Hashimoto M, Kawahara K, Bar-On P, Rockenstein E, Crews L, Masliah E (2004) The Role of alpha-synuclein assembly and metabolism in the pathogenesis of Lewy body disease. J Mol Neurosci 24:343-352. https://doi.org/10.1385/JMN:24:3:343
Horne R, Wilson-Godber J, Gonzalez Diaz A, Brotzakis Z, Seal S, Gregory R, Possenti A, Chia S, Vendruscolo M (2024) Using Generative Modeling to Endow with Potency Initially Inert Compounds with Good Bioavailability and Low Toxicity. J Chem Inf Model 64:590-596. https://doi.org/10.1021/acs.jcim.3c01777
Hornedo-Ortega R, Alvarez-Fernandez M, Cerezo A, Richard T, Troncoso A, Garcia-Parrilla M (2016) Protocatechuic Acid: Inhibition of Fibril Formation, Destabilization of Preformed Fibrils of Amyloid-beta and alpha-Synuclein, and Neuroprotection. J Agric Food Chem 64:7722-7732. https://doi.org/10.1021/acs.jafc.6b03217
Horsley J, Jovcevski B, Pukala T, Abell A (2022) Designer D-peptides targeting the N-terminal region of alpha-synuclein to prevent parkinsonian-associated fibrilization and cytotoxicity. Biochim Biophys Acta Proteins Proteom 1870:140826. https://doi.org/10.1016/j.bbapap.2022.140826
Hsu L, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong, J, Takenouchi T, Hashimoto M, Masliah E (2000) alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157:401-410. https://doi.org/10.1016/s0002-9440(10)64553-1
Hu Q, Uversky V, Huang M, Kang H, Xu F, Liu X, Lian L, Liang Q, Jiang H, Liu A, Zhang C, Pan-Montojo F, Zhu S (2016) Baicalein inhibits alpha-synuclein oligomer formation and prevents progression of alpha-synuclein accumulation in a rotenone mouse model of Parkinson's disease. Biochim Biophys Acta 1862:1883-1890. https://doi.org/10.1016/j.bbadis.2016.07.008
Illes-Toth E, Rempel D, Gross M (2024) Exploration of Resveratrol as a Potent Modulator of alpha-Synuclein Fibril Formation. ACS Chem Neurosci 15:503-516. https://doi.org/10.1021/acschemneuro.3c00571
Inciardi I, Rizzotto E, Gregoris F, Fongaro B, Sosic A, Minervini G, Polverino de Laureto P (2025) Catechol-induced covalent modifications modulate the aggregation tendency of alpha-synuclein: An in-solution and in-silico study. Biofactors 51:e2086. https://doi.org/10.1002/biof.2086
Inden M, Takagi A, Kitai H, Ito T, Kurita H, Honda R, Kamatari Y, Nozaki S, Wen X, Hijioka M, Kitamura Y, Hozumi I (2021) Kaempferol Has Potent Protective and Antifibrillogenic Effects for alpha-Synuclein Neurotoxicity In Vitro. Int J Mol Sci 22:21 https://doi.org/10.3390/ijms222111484
Jellinger K (2022) Heterogeneity of Multiple System Atrophy: An Update. Biomedicines 10:3 https://doi.org/10.3390/biomedicines10030599
Jimenez-Aliaga K, Bermejo-Bescos P, Benedi J, Martin-Aragon S (2011) Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci 89:939-945. https://doi.org/10.1016/j.lfs.2011.09.023
Kemperman R, Bolca S, Roger L, Vaughan E (2010) Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities. Microbiology (Reading) 156:3224-3231. https://doi.org/10.1099/mic.0.042127-0
King K, Bevan D, Brown A (2022) Molecular Dynamics Simulations Indicate Aromaticity as a Key Factor in the Inhibition of IAPP((20-29)) Aggregation. ACS Chem Neurosci 13:1615-1626. https://doi.org/10.1021/acschemneuro.2c00025
Klein C, Westenberger A (2012) Genetics of Parkinson's disease. Cold Spring Harb Perspect Med 2:a008888. https://doi.org/10.1101/cshperspect.a008888
Kumar S, Krishnakumar V, Morya V, Gupta S, Datta B (2019) Nanobiocatalyst facilitated aglycosidic quercetin as a potent inhibitor of tau protein aggregation. Int J Biol Macromol 138:168-180. https://doi.org/10.1016/j.ijbiomac.2019.07.081
Lam H, Graber M, Gentry K, Bieschke J (2016) Stabilization of alpha-Synuclein Fibril Clusters Prevents Fragmentation and Reduces Seeding Activity and Toxicity. Biochemistry 55:675-685. https://doi.org/10.1021/acs.biochem.5b01168
Lashuel H, Overk C, Oueslati A, Masliah E (2013) The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14:38-48. https://doi.org/10.1038/nrn3406
Levin J, Schmidt F, Boehm C, Prix C, Botzel K, Ryazanov S, Leonov A, Griesinger C, Giese A (2014) The oligomer modulator anle138b inhibits disease progression in a Parkinson mouse model even with treatment started after disease onset. Acta Neuropathol 127:779-780. https://doi.org/10.1007/s00401-014-1265-3
Li B, Ge P, Murray K, Sheth P, Zhang M, Nair G, Sawaya M, Shin W, Boyer D, Ye S, Eisenberg D, Zhou Z, Jiang L (2018) Cryo-EM of full-length alpha-synuclein reveals fibril polymorphs with a common structural kernel. Nat Commun, 9:3609. https://doi.org/10.1038/s41467-018-05971-2
Li J, Zhu M, Manning-Bog A, Di Monte D, Fink, A (2004) Dopamine and L-dopa disaggregate amyloid fibrils: implications for Parkinson's and Alzheimer's disease. FASEB J 18:962-964. https://doi.org/10.1096/fj.03-0770fje
Liang F, Wan Y, Schaak D, Ward J, Shen X, Tanzi R, Zhang C, Quan Q (2017) Nanoplasmonic fiber tip probe detects significant reduction of intracellular Alzheimer's disease-related oligomers by curcumin. Sci Rep, 7:5722. https://doi.org/10.1038/s41598-017-05619-z
Madine J, Doig A, Middleton D (2008) Design of an N-methylated peptide inhibitor of alpha-synuclein aggregation guided by solid-state NMR. J Am Chem Soc 130:7873-7881. https://doi.org/10.1021/ja075356q
Manzanza N, Sedlackova, Kalaria R (2021) Alpha-Synuclein Post-translational Modifications: Implications for Pathogenesis of Lewy Body Disorders. Front Aging Neurosci 13:690293. https://doi.org/10.3389/fnagi.2021.690293
Marotta N, Lin Y, Lewis Y, Ambroso M, Zaro B, Roth M, Arnold D, Langen R, Pratt M (2015) O-GlcNAc modification blocks the aggregation and toxicity of the protein alpha-synuclein associated with Parkinson's disease. Nat Chem 7:913-920. https://doi.org/10.1038/nchem.2361
Mirzaei-Behbahani B, Meratan A, Moosakhani B, Mohammad-Zaheri M, Mousavi-Jarrahi Z, Nikfarjam N, Shahsavani M, Saboury A (2024) Efficient inhibition of amyloid fibrillation and cytotoxicity of alpha-synuclein and human insulin using biosynthesized silver nanoparticles decorated by green tea polyphenols. Sci Rep 14:3907. https://doi.org/10.1038/s41598-024-54464-4
Muller T (2012) Drug therapy in patients with Parkinson's disease. Transl Neurodegener 1:10. https://doi.org/10.1186/2047-9158-1-10
Oliveri V (2019) Toward the discovery and development of effective modulators of alpha-synuclein amyloid aggregation. Eur J Med Chem 167:10-36. https://doi.org/10.1016/j.ejmech.2019.01.045
Ono K, Yamada M (2006) Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro. J Neurochem 97:105-115. https://doi.org/10.1111/j.1471-4159.2006.03707.x
Pena-Diaz S, Garcia-Pardo J, Ventura S (2023) Development of Small Molecules Targeting alpha-Synuclein Aggregation: A Promising Strategy to Treat Parkinson's Disease. Pharmaceutics 15:3. https://doi.org/10.3390/pharmaceutics15030839
Radbakhsh S, Barreto G, Bland A, Sahebkar A (2021) Curcumin: A small molecule with big functionality against amyloid aggregation in neurodegenerative diseases and type 2 diabetes. Biofactors 47:570-586. https://doi.org/10.1002/biof.1735
Raza C, Anjum R, Shakeel N (2019) Parkinson's disease: Mechanisms, translational models and management strategies. Life Sci 226:77-90. https://doi.org/10.1016/j.lfs.2019.03.057
Rezaei Kamelabad M, Jahanbin Sardroodi J, Rastkar Ebrahimzadeh A, Ajamgard M (2021) Influence of curcumin and rosmarinic acid on disrupting the general properties of Alpha-Synuclein oligomer: Molecular dynamics simulation. J Mol Graph Model 107:107963. https://doi.org/10.1016/j.jmgm.2021.107963
Rocha Cabrero F, Morrison E (2024) Lewy Bodies. StatPearls Publishing StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK536956/
Scott D, Tabarean I, Tang Y, Cartier A, Masliah E, Roy S (2010) A pathologic cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration. J Neurosci, 30:8083-8095. https://doi.org/10.1523/JNEUROSCI.1091-10.2010
Shvadchak V, Claessens M, Subramaniam V (2015) Fibril breaking accelerates alpha-synuclein fibrillization. J Phys Chem B 119:1912-1918. https://doi.org/10.1021/jp5111604
Siracusa R, Scuto M, Fusco R, Trovato A, Ontario M, Crea R, Di Paola R, Cuzzocrea S, Calabrese V (2020) Anti-inflammatory and Anti-oxidant Activity of Hidrox((R)) in Rotenone-Induced Parkinson's Disease in Mice. Antioxidants (Basel) 9:9 https://doi.org/10.3390/antiox9090824
Spillantini M, Schmidt M, Lee V, Trojanowski J, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839-840. https://doi.org/10.1038/42166
Szego E, Boss F, Komnig D, Gartner C, Hofs L, Shaykhalishahi H, Wordehoff M, Saridaki T, Schulz B, Hoyer W, Falkenburger B (2021) A beta-Wrapin Targeting the N-Terminus of alpha-Synuclein Monomers Reduces Fibril-Induced Aggregation in Neurons. Front Neurosci 15:696440. https://doi.org/10.3389/fnins.2021.696440
Takahashi R, Ono K, Takamura Y, Mizuguchi M, Ikeda T, Nishijo H, Yamada M (2015) Phenolic compounds prevent the oligomerization of alpha-synuclein and reduce synaptic toxicity. J Neurochem 134:943-955. https://doi.org/10.1111/jnc.13180
Tavanti F, Pedone A, Menziani M (2020) Insights into the Effect of Curcumin and (-)-Epigallocatechin-3-Gallate on the Aggregation of Abeta(1-40) Monomers by Means of Molecular Dynamics. Int J Mol Sci 21:15 https://doi.org/10.3390/ijms21155462
Wang D, Ho L, Faith J, Ono K, Janle E, Lachcik P, Cooper B, Jannasch A, D'Arcy B, Williams B, Ferruzzi M, Levine S, Zhao W, Dubner L, Pasinetti G (2015) Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer's disease beta-amyloid oligomerization. Mol Nutr Food Res 59:1025-1040. https://doi.org/10.1002/mnfr.201400544
Wu L, Chu L, Pang Y, Huo J, Cao H, Tian Q, Gao Q (2024) Effects of dietary supplements, foods, and dietary patterns in Parkinson's disease: meta-analysis and systematic review of randomized and crossover studies. Eur J Clin Nutr 78:365-375. https://doi.org/10.1038/s41430-024-01411-1
Wu L, Velander P, Brown A, Wang Y, Liu D, Bevan D, Zhang S, Xu B (2021) Rosmarinic Acid Potently Detoxifies Amylin Amyloid and Ameliorates Diabetic Pathology in a Transgenic Rat Model of Type 2 Diabetes. ACS Pharmacol Transl Sci 4:1322-1337. https://doi.org/10.1021/acsptsci.1c00028
Yamasaki T, Ono K, Ho L, Pasinetti G (2020) Gut Microbiome-Modified Polyphenolic Compounds Inhibit alpha-Synuclein Seeding and Spreading in alpha-Synucleinopathies. Front Neurosci 14:398. https://doi.org/10.3389/fnins.2020.00398
Yao Y, Tang Y, Zhou Y, Yang Z, Wei G (2022) Baicalein exhibits differential effects and mechanisms towards disruption of alpha-synuclein fibrils with different polymorphs. Int J Biol Macromol 220:316-325. https://doi.org/10.1016/j.ijbiomac.2022.08.088
Zella M, Metzdorf J, Ostendorf F, Maass F, Muhlack S, Gold R, Haghikia A, Tonges L (2019) Novel Immunotherapeutic Approaches to Target Alpha-Synuclein and Related Neuroinflammation in Parkinson's Disease. Cells 8:2 https://doi.org/10.3390/cells8020105
Zhang L, Yu X, Ji M, Liu S, Wu X, Wang Y, Liu R (2018) Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T alpha-synuclein mouse model of Parkinson's disease. Food Funct 9:6414-6426. https://doi.org/10.1039/c8fo00964c
Zhu M, Han S, Fink A (2013) Oxidized quercetin inhibits alpha-synuclein fibrillization. Biochim Biophys Acta 1830:2872-2881. https://doi.org/10.1016/j.bbagen.2012.12.027
Zhytniakivska O, Chaturvedi T, Thomsen M (2025) Plant-Based Inhibitors of Protein Aggregation. Biomolecules 15:4 https://doi.org/10.3390/biom15040481
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2025 Andrii Shturmak, Volodymyr Shvadchak

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


